3. Failure Theories

- 3.1 Definitions of Failure
- 3.2 Types of Failure
 Yielding, Fracture, Buckling
- 3.3 Factors Affecting Mode of Failure
- 3.4 Uniaxial Versus Multiaxial (Combined Loading) Cases
- 3.5 Yielding and Fracture Criteria for Multiaxial Stress State
- 3.6 Shaft Subjected to Combined Axial Force and Twisting Moment
- 3.7 Application of Failure Theories to Design

Failure Theories

Definitions of Failure

Definition

Failure is any action leading to an inability of the structure (or its components) to function in the manner intended.

Types of Failure

Types (or Modes) of Failure

- Excessive elastic deformations
- Permanent deformation (or yielding)
- Fracture
 - Brittle (e.g., concrete, stone, glass)
 - Ductile (e.g., mild steel, aluminum,copper)
 - Progressive fatigue
- Instability

Factors Affecting Mode of Failure

Characteristics of structural member

- material
- geometry and shape

Loading

- loading configuration and rate
- surrounding media

Uniaxial versus Multiaxial (combined loading) cases

- For uniaxial stress (and loading) the onset of failure (by yielding or fracture) can be predicted from the stress-strain diagram.
- For multiaxial (combined loading) case, a response quantity (stress, strain or energy) associated with failure is chosen.
 - A maximum (or critical) value of the quantity is selected to predict the onset of failure
 - A uniaxial (or torsion) test is used to determine the maximum (or critical) value.

3.5 Yielding and Fracture Criteria for Multiaxial Stress State

- 3.5.1 Maximum Principal Stress
 Theory
- 3.5.2 Maximum Strain Theory
- 3.5.3 Maximum Shear Stress Theory
- 3.5.4 Maximum Total Strain Energy Theory
- 3.5.5 Maximum Energy of Distortion Theory
- 3.5.6 Maximum Octahedral Shear Stress Theory

Maximum Principal Sress Theory

Maximum Principal Stress Theory (Rankin's Theory)

№

 Fracture is assumed to occur at a point when the maximum principal stress at that point reaches the ultimate stress in simple tension or compression, for the material.

 The criterion is suitable for brittle materials.

Maximum Strain Theory

(St. Venant's Theory)

- Yielding is assumed to begin at a point when the maximum strain at that point reaches a value equal to that of the yield strain in a simple tension test.
- In terms of principal strains

$$\varepsilon_{\text{max}} = \varepsilon^{\text{I}} = \frac{1}{E} \left(\sigma^{\text{I}} - \upsilon \sigma^{\text{II}} - \upsilon \sigma^{\text{III}} \right)$$

In uniaxial tension

$$\varepsilon_{\text{yield}} = \frac{1}{E} \sigma_{\text{yield}}$$

Maximum Strain Theory

Two-dimensional stress state σ^{III} = 0

$$-\sigma_{yield} \le \sigma^{l} - \nu \sigma^{ll} \le \sigma_{yield}$$

$$-\sigma_{yield} \le \sigma^{II} - \nu \sigma^{I} \le \sigma_{yield}$$

Maximum Strain Theory

$$-\sigma_{\text{yield}} \leq \sigma^{\text{I}} - \nu \sigma^{\text{II}} \leq \sigma_{\text{yield}}$$

$$-\sigma_{\text{yield}} \le \sigma^{\text{II}} - \nu \sigma^{\text{I}} \le \sigma_{\text{yield}}$$

for

$$\sigma^{I} - v \sigma^{II} = \sigma_{yield}$$

$$\sigma^{l} = \sigma_{yield} + v \sigma^{ll}$$

for

$$\sigma^{I} - v \sigma^{II} = -\sigma_{yield}$$

$$\sigma^{l} = -\sigma_{yield} + v \sigma^{ll}$$

Maximum Strain Theory

for

$$\sigma^{I} - v \sigma^{II} = \sigma_{yield}$$

$$\sigma^{l} = \sigma_{yield} + v \sigma^{ll}$$

for

$$\sigma^{I} - v \sigma^{II} = -\sigma_{yield}$$

$$\sigma^{I} = -\sigma_{yield} + v \sigma^{II}$$

with similar equations for

$$\sigma^{II} - v \sigma^{I} = \pm \sigma$$
 yield

Maximum Shear Stress Theory

(Coulomb's, Tresca's or Guest's Theory)

 Yielding is assumed to begin at a point when the maximum shear stress at that point equals the shear stress at the yield point in a simple tension test.

· In terms of principal stresses

$$\tau_{\text{max}} = \tau_{\text{III,I}} = \frac{1}{2} \left| \sigma^{\text{III}} - \sigma^{\text{I}} \right|$$

Maximum Shear Stress Theory

In uniaxial tension

$$\sigma^{\parallel} = \sigma^{\parallel} = 0$$

$$\tau_{\text{max}} = \frac{1}{2} \, \sigma_{\text{yield}}$$

· At the onset of yielding

$$|\sigma^{\mathsf{I}} - \sigma^{\mathsf{III}}| = \sigma_{\mathsf{yield}}$$

 The criterion is suitable for ductile materials.

Maximum Shear Stress Theory

• Two-dimensional stress state $\sigma^{III} = 0$ - if σ^{I} and σ^{II} have the same sign, then

$$\tau_{\text{max}} = \frac{1}{2} \left(\sigma^{\text{I}} - \sigma^{\text{III}} \right)$$

or

$$\tau_{\text{max}} = \frac{1}{2} \left(\sigma^{\text{II}} - \sigma^{\text{III}} \right)$$

$$\tau_{\text{max}} = \frac{1}{2} \left(\sigma^{\text{I}} - \sigma^{\text{II}} \right)$$

or

$$\tau_{\text{max}} = \frac{1}{2} \left(\sigma^{\text{II}} - \sigma^{\text{I}} \right)$$

Maximum Total Strain Energy Theory

(Beltrami and Haigh's Theory)

- Yielding is assumed to begin at a point when the total strain energy density at that point reaches a value equal to the strain energy density in uniaxial tension (or compression).
- In terms of principal stresses, the total strain energy density

$$U = \frac{1}{2E} \left[(\sigma^{I})^{2} + (\sigma^{II})^{2} + (\sigma^{III})^{2} - 2\upsilon(\sigma^{I}\sigma^{II} + \sigma^{II}\sigma^{III} + \sigma^{III}\sigma^{I}) \right]$$

· In uniaxial tension

Maximum Total Strain Energy Theory

 In terms of principal stresses, the total strain energy density

$$U = \frac{1}{2E} [(\sigma^{||})^2 + (\sigma^{||})^2 + (\sigma^{|||})^2 - 2v(\sigma^{||}\sigma^{||} + \sigma^{||}\sigma^{||} + \sigma^{|||}\sigma^{||})]$$

In uniaxial tension

$$U = \frac{1}{2E} \left(\sigma_{\text{yield}} \right)^2$$

Maximum Energy of Distortion Theory

(Von Mises, Huber, Hencky Theory)

- Yielding is assumed to begin at a point when the distortional energy density (strain energy density associated with the change in shape in terms of the deviatoric stresses and strains) at that point reaches a value equal to the distortional strain energy at yield in uniaxial tension (or compression).
- In terms of principal stresses

Maximum Energy of Distortion Theory

In terms of principal stresses

$$U_{dist.} = \frac{1}{12G} \left[(\sigma^{I} - \sigma^{II})^{2} + (\sigma^{II} - \sigma^{III})^{2} + (\sigma^{III} - \sigma^{I})^{2} \right]$$

Yielding begins when

$$\mathbf{U}_{\text{dist.}} = \frac{1}{6G} \left(\sigma_{\text{yield}} \right)^2$$

Maximum Energy of Distortion Theory

• Two-dimensional state of stress, $\sigma^{|||} = 0$

$$(\sigma^{I})^{2} - \sigma^{I} \sigma^{II} + (\sigma^{II})^{2} = (\sigma_{yield})^{2}$$

or

$$\left(\sigma_{\rm e}\right)^2 = \left(\sigma_{\rm yield}\right)^2$$

where

$$\sigma_{e} = \left[(\sigma^{I})^{2} - \sigma^{I} \sigma^{II} + (\sigma^{II})^{2} \right]^{1/2}$$

= effective (or von-Mises) stress

Maximum Octahedral Shear Stress Theory

- Yielding is assumed to begin at a point when the shearing stresses on the octahedral planes at the point reach a value equal to the octahedral shearing stress in uniaxial tension (or compression).
- · In terms of principal stresses

$$\left(\tau_{oct.}\right)^2 = \frac{1}{9} \left[\left(\sigma^I - \sigma^{II}\right)^2 + \left(\sigma^{II} - \sigma^{III}\right)^2 + \left(\sigma^{III} - \sigma^I\right)^2 \right] = \frac{2}{3} \frac{E}{1 + \upsilon} U_{dist.}$$

Maximum Octahedral Shear Stress Theory

In terms of principal stresses

$$\left(\tau_{\text{oct.}}\right)^2 = \frac{1}{9} \left[\left(\sigma^{\text{I}} - \sigma^{\text{II}}\right)^2 + \left(\sigma^{\text{II}} - \sigma^{\text{III}}\right)^2 + \left(\sigma^{\text{III}} - \sigma^{\text{I}}\right)^2 \right] = \frac{2}{3} \frac{E}{1 + \upsilon} U_{\text{dist.}}$$

Yielding begins when

$$\tau_{\rm oct.} = \frac{\sqrt{2}}{3} \, \sigma_{\rm yield}$$

Maximum Octahedral Shear Stress Theory

Two-dimensional case, σ^{III} = 0

$$(\sigma^{I})^{2} - \sigma^{I}\sigma^{II} + (\sigma^{II})^{2} = (\sigma_{yield})^{2}$$

same as the maximum energy of distortion theory

· For the torsion test

$$\tau_{\text{max}} = \frac{M_{\text{tr}}}{I_{\text{p}}}$$

Tyield

- Maximum shear stress theory

Maximum Octahedral Shear Stress Theory

- Maximum energy of distortion

$$U_{\text{dist.}} = \frac{1}{2G} (\tau_{\text{yield}})^2$$

$$= \frac{(1+v)}{E} (\tau_{yield})^2$$

Maximum octahedral shear stress

$$\tau_{\text{oct.}} = \sqrt{\frac{2}{3}} \tau_{\text{yield}}$$

Shaft Subjected to Combined Axial Force and Twisting Moment

Normal Stresses

$$\sigma = \frac{N}{A}$$
, $A = \frac{\pi d^2}{4}$

uniformly distributed over the cross section.

Torsional Shear Stresses

$$\tau_{\text{max}} = \frac{M_{t}r}{I_{p}}$$
,

$$\tau_{\text{max}} = \frac{16 \, \text{M}_{\text{t}}}{\pi \text{d}^3}$$

Shear stresses are maximum at the perimeter of the cross section.

Maximum Principal Stresses

Occur at the perimeter of the cross section.

Stress Matrix

$$\left[\sigma \right] = \left[\begin{array}{ccc} \sigma & \tau & \cdot \\ \tau & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{array} \right]$$

Principal Stresses

$$\left\{ \begin{matrix} \sigma^I \\ \sigma^{II} \end{matrix} \right\} = \frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

$$\sigma^{III} = 0$$

Maximum Shear Stress

$$\tau_{\text{max}} = \pm \frac{1}{2} \left(\sigma^{\text{I}} - \sigma^{\text{II}} \right)$$

$$= \pm \sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2}$$

uniaxial stress state

$$\tau_{\text{max}} = \frac{1}{2} \, \sigma_{\text{yield}}$$

Therefore,

$$\sqrt{\left(\frac{\sigma}{2}\right)^2 + \tau^2} = \frac{1}{2} \sigma_{yield}$$

or,

$$\sigma^2 + 4 \tau^2 = (\sigma_{yield})^2$$

Volumetric and Deviatoric Stress Components

$$\begin{bmatrix} \sigma & \tau & \cdot \\ \tau & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \frac{\sigma}{3} & \cdot & \cdot \\ \cdot & \frac{\sigma}{3} & \cdot \\ \cdot & \cdot & \frac{\sigma}{3} \end{bmatrix} + \begin{bmatrix} \frac{2}{3}\sigma & \tau & \cdot \\ \tau & -\frac{\sigma}{3} & \cdot \\ \cdot & \cdot & -\frac{\sigma}{3} \end{bmatrix}$$

Strain Energy Densities

$$U_{\text{tot}} = \frac{\sigma^2}{2E} + \frac{\tau^2}{2G}$$

Shaft Subjected to Combined Axial Force and Twisting Moment

Strain Energy Densities

$$U_{\text{tot}} = \frac{\sigma^2}{2E} + \frac{\tau^2}{2G}$$

$$U_{\text{vol}} = \frac{3}{2} \sigma_{\text{vol}} \times \varepsilon_{\text{vol}}$$

$$= \frac{3}{2} \frac{\sigma}{3} \cdot \left(\frac{\left(1 - 2\upsilon\right)}{\mathsf{E}} \frac{\sigma}{3} \right)$$

$$= \left(\frac{\left(1-2\upsilon\right)}{6E}\,\sigma^2\right)$$

$$U_{dist} = U_{tot} - U_{vol}$$

$$=\frac{1+\upsilon}{3E}\left(\sigma^2+3\tau^2\right)$$

For uniaxial stress state

$$U_{dist} = \frac{1+0}{3E} (\sigma_{yield})^2$$

$$\sigma^2 + 3\tau^2 = \left(\sigma_{\text{yield}}\right)^2$$

$$= \frac{1}{\sigma_y/3} + \frac{1}{2\sigma_y/3}$$

Application of Failure Theories to Design

- A margin of safety is introduced in the design.
- Factor of safety, f, is the ratio of the failure load to the design load.
- Stresses are assumed to be proportional to the loads. Therefore,

f = failure stress design stress

Application of Failure Theories to Design

Maximum principal stress theory

$$\sigma_{\text{design}} = \frac{1}{f} \sigma_{\text{yield}}$$

· Maximum strain theory

$$\varepsilon_{\text{design}} = \frac{1}{f} \frac{\sigma_{\text{yield}}}{E}$$

Application of Failure Theories to Design

Maximum shear stress theory

Tension test

$$\tau_{\text{design}} = \frac{1}{2f} \sigma_{\text{yield}}$$

Torsion test

$$\tau_{\text{design}} = \frac{1}{f} \sigma_{\text{yield}}$$

Application of Failure Theories to Design

Maximum total strain energy theory

$$U_{\text{design}} = \frac{1}{2E} \left(\frac{\sigma_{\text{yield}}}{f} \right)^2$$

Application of Failure Theories to Design

Maximum energy of distortion theory

Tension test
$$U_{dist.} \Big|_{design} = \frac{1}{6G} \left(\frac{\sigma_{yield}}{f} \right)^{2}$$

Torsion test
$$U_{dist.} \Big|_{design} = \frac{1}{2G} \left(\frac{\tau_{yield}}{f} \right)^{2}$$

Application of Failure Theories to Design

 Maximum octahedral shear stress theory Tension test

$$\tau_{\text{oct.}} \Big|_{\text{design}} = \frac{\sqrt{2}}{3} \frac{\sigma_{\text{yield}}}{f}$$

Torsion test

$$\tau_{\text{oct.}}\Big|_{\text{design}} = \sqrt{\frac{2}{3}} \frac{\tau_{\text{yield}}}{f}$$